Code No: C1504

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I - Semester Examinations, March/April 2011 COMPUTATIONAL METHODS IN ENGINEERING (MACHINE DESIGN)

Time: 3hours Max. Marks: 60

Answer any five questions All questions carry equal marks

- - -

- 1. Solve thee following equations by relaxation method $10 \times 2 \times 2 \times 2 \times 6$, $-x 10 \times 2 \times 2 \times 7$, -x y + 10z = 8. [12]
- 2. a) Derive Gaussian quadrature formula.
 - b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ by
 - i) Trapezoidal rule
 - ii) Simpson's 1/3 rd rule, taking h = .25

3. Solve the boundary value problem y'' + y = -x, 0 < x < 1 [12]

4. Solve
$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} - y^2 = 0$$
, $0 \le x \le 1$

$$\frac{dy}{dx} = (y - 1) \text{ at } x = 0$$

$$= 0 \text{ at } x = 1 \text{ by shooting method}$$
[12]

5. Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$$
 in $0 \le x \le 4$, $0 \le y \le 4$
Given that $u(0, y) = 0$, $u(4, y) = 8 + 2y$, $u(x, 0) = \frac{x^2}{2}$, $u(x, 4) = x^2$
And $h = k = 1$

6. Solve
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
, $0 < x < 1 \ t > 0$ $u(0, t) = 0$, $u(1, t) = 0$, $u(x, 0) = 100(x - x^2)$ and $h = 0.25$ by Crank Nickelson method. [12]

7. By the method of least squares fit the parabola $y=a+bx+cx^2$.

X	2	4	6	8	10
у	3.07	12.85	31.47	57.38	91.29

[12]

8. Find the least squares Regression equation of x on y and z from the following data [12]

X	3	5	6	8	12	14
y	16	10	7	4	3	2
Z	90	72	54	42	30	12