JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M.Tech I - Semester Examinations, March/April 2011

COMPUTATIONAL METHODS IN ENGINEERING
(MACHINE DESIGN)
Time: 3hours
Max. Marks: 60

Answer any five questions All questions carry equal marks

1. Solve thee following equations by relaxation method

$$
\begin{equation*}
10 x-2 y-2 z=6,-x-10 y-2 z=7,-x-y+10 z=8 . \tag{12}
\end{equation*}
$$

2. a) Derive Gaussian quadrature formula.
b) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by
i) Trapezoidal rule
ii) Simpson's $1 / 3$ rd rule, taking $h=.25$
3. Solve the boundary value problem y'" $+y=-x$, $Y(0)=y(1)=0$, by Rayleigh ridge method
4. Solve $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-\mathrm{y}^{2}=0, \quad 0 \leq \mathrm{x} \leq 1$

$$
\begin{align*}
\frac{d y}{d x} & =(\mathrm{y}-1) \text { at } \mathrm{x}=0 \\
& =0 \text { at } \mathrm{x}=1 \text { by shooting method } \tag{12}
\end{align*}
$$

5. Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x^{2}}=0$ in $0 \leq \mathrm{x} \leq 4,0 \leq \mathrm{y} \leq 4$

Given that $u(0, y)=0, u(4, y)=8+2 y, u(x, 0)=\frac{x^{2}}{2}, u(x, 4)=x^{2}$
And $\mathrm{h}=\mathrm{k}=1$
6. Solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, 0<x<1 t>0$
$\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(1, \mathrm{t})=0, \mathrm{u}(\mathrm{x}, 0)=100\left(\mathrm{x}-\mathrm{x}^{2}\right)$ and $\mathrm{h}=0.25$ by Crank Nickelson method.
7. By the method of least squares fit the parabola $y=a+b x+c x^{2}$.

x	2	4	6	8	10
y	3.07	12.85	31.47	57.38	91.29

8. Find the least squares Regression equation of x on y and z from the following data

x	3	5	6	8	12	14
y	16	10	7	4	3	2
z	90	72	54	42	30	12

